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Self-Assembly of Nanoparticles:
A Snapshot

Soon after the discovery of methods for nanoparticle (NP) synthesis, scientists observed
the ability of nanoparticles to self-assemble.1�5 Since that time, the area has evolved into
a field with considerable phenomenological breadth. Compared to classical colloidal

particles, which produce superlattices following motifs of close-packed spheres, nanoscale
particles brought about exceptional diversity of assembly patterns.6 To some degree, such
diversity is not surprising. The reduction of particle dimensions from the micrometer scale
to the nanoscale leads to interparticle interactions that are more subtle and variable than
those typical for classical colloid chemistry. In fact, nanoscale particles start resembling self-
assembly components found in biology, such as globular proteins,7 and replicate their
assembly behavior.8 We can also see the unity of self-assembly phenomena across scales9

and start applying formal theories of self-organization phenomena.10 The early technolog-
ical applications of NP self-assembly processes taking advantage of their intrinsic scalability
are also emerging.11

Hierarchical assembly remains one of the most appealing targets in nanoscience,12

with the idea that we can use NPs and other building blocks in assemblies so as to tailor
the properties of the material pro-
duced. Since we started publishing
ACS Nano, we have explored these
ideas, laying out the challenges and
opportunities in this field.12�14 In the
United States and elsewhere around
the globe, some of these challenges have been taken up as national and international
challenges.15 We are proud to continue to publish many of the leading advances in this field.

This issue of ACS Nano contains a wonderful sampling of ideas driving current studies of
NP assemblies. A step toward development of new concepts in this area is described in the
interesting study of the effects of symmetry on self-assembly patterns that points out
the importance of competition in different assembly pathways.16 In order to accomplish
advances in the fundamentals of self-organization, one also needs better understanding of
NP anisotropy, which often defines which of many assembly patterns will dominate.
Therefore, studies on the atomic-level design and metrology of Au clusters17 and metal-
tipped semiconductor nanorods18 deserve particular attention.

Self-assembled systems made from plasmonic NPs display strong sensitivity to even
slight changes in the geometry of the assembled structures. The variety of such systems
continues expanding despite being among the earliest studied cases of self-assembly.
Continuing expansion is fueled, in part, by the discoveries of new materials with plasmonic
bands in the IR part of the spectrum, represented here by the study of the plasmonic effects
for MoS2 NPs.

19 The technological importance of plasmonic assemblies can be found in the
study of Au/Ag nanocubes for solar cells.20 The roles of similar systems for biosensing and
imaging also constitute parts of the two Perspective articles published in this issue.21,22

The relevance of dynamic systems made from NPs and globular proteins becomes
particularly clear in studies of surprising in vivo instability of Au�Ag nanoshells23 and
biological effects of MnO2 NPs with albumin.24 These studies provide a new point of view on
NP behavior in biological environments. The analogy between the behavior of proteins and
some NPs can be unmistakably identified by observing integration of NPs and their clusters
in vesicle bilayers25 and clearance of NPs by the reticular endothelial system.26

In the past decade, we have also seen rapid growth in the area of NP self-assembly for
energy conversion and storage. As such, simplemotifs of NP assemblies with cricoid proteins
are shown to benefit energy harvesting.27 The widespread interest to conductive hybrid
materials incorporating NPs is impossible to overlook. It originates from the ability of
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inorganic NPs to transport/store electrons and to self-organize into charge conduction
pathways.28,29 Recently, we have seen special attention given to self-assembly of graphene-
based composites with earth-abundant NPs. Although there are no intricate three-dimensional
assembly motifs observed for such systems yet, the ability of graphene and other two-
dimensional materials to template NP formation provides a reliable and versatile method of
controlling their organization. This issue features new studies in this field devoted to hybrid
graphene�CoSe2 catalysts for water oxidation

30 and Fe2O3�graphene superstructures for
lithium batteries.31 Along similar lines, charge trapping accompanying charge transport in
NP solids is critical for their performance. For everyone interested in photovoltaic applica-
tions of NPs methods to improve performance, we recommend reading the new study on
the trap-induced losses in NP�polymer materials.32

Last but not least, the research on self-assembling semiconductor NPs evolves toward
their integration with well-developed micro- and mesoscale lithography tools.33,34 This
research is driven by the technological logic, and the success of such integration is likely to
determine the viability of NP films in new platforms for electronics. The advances in this area
can be found in the paper describing perfect ordering in sub-100 nm NP arrays molded by
ultrathin alumina membranes.35

Disclosure: Views expressed in this editorial are those of the authors and not necessarily the views
of the ACS.
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